RISC-V for AI/ML

Progress, Innovation & the Road Ahead

Wednesday, September 24, 2025

RISC-V for AI/ML

Progress, Innovation & the Road Ahead

Agenda:

- (5 min) RISC-V Developer Updates Amber Huffman
- (10 min) RISC-V International Remarks Andrea Gallo
- (10 min) Yocto RISC-V Progress Valentina Fernandez Alanis
- (20 min) Deep Dive on AI/ML Plans Ludovic Henry
- (15 min) Q&A

RISC-V North America Summit

Join us at the RISC-V North America Summit October 22-23 in Santa Clara, CA – there are lots of ways to get involved and learn more!

What to expect at the Summit

- Tracks for Hardware and Software
- Separate ticket from Summit \$150 attendee ticket, some \$75 tickets available for those that need registration assistance
- \$5,000 event sponsorships still available includes logo event related materials (website, email and signage onsite). These sponsorships are available to companies that are a sponsor of RISC-V Summit North America.

What to expect for Developer Day

- October 22, 2025 at the Santa Clara Convention Center
- Ideal for developers interested in learning about RISC-V or RISC-V Developers looking to expand their knowledge
- Register at: https://events.linuxfoundation.org/riscv-summit/features/risc-v-developer-workshops

Want to learn more about RISE? Stop by our booth or hang out in the lounge!

Get Involved: Gemini Credits + More!

Gemini Credits Several Gemini credit grants for academics to accelerate AI-driven software porting to RISC-V are available. <u>Nominations</u> are open now through October 2. Winners will be announced October 22 at the RISC-V NA Summit.

Nominate a Developer: RISE Developer Awards – Deadline Extended, Closes TODAY! Developers should have made a notable contribution to the space and or is a generally wonderful collaborator, simply making things easier! Nominate now

Get involved in a RISE Working Group

Want to learn more or start contributing? Join a <u>RISE Working Group</u> – contribute to more than 10 different projects or focus areas!

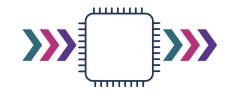
RISC-V Developer Appreciation Program, recognizing and <u>rewarding developers</u> who help expand RISC-V adoption through open-source contributions. Whether you're porting a small project or a larger one, contribute to the RISC-V ecosystem.

Global standards are a catalyst to accelerate technical innovation

Standards have been critical to technology innovation, adoption, and growth for decades

Standards create access to opportunities and spur growth for a wide range of stakeholders

RISC-V is a standards-defined Instruction Set Architecture developed by a global community



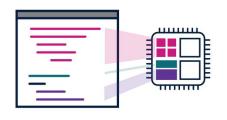
Expanding the base ISA architecture

RISC-V enables specific compute blocks to be developed for specific workloads

Start with a basic CPU the add extensions

RISC-V customization can add new flexibility and performance to memory access

Enables innovation, exploration, fast development and reusability



Al Specific Design

Extensible ISA enables a software-focused approach to Al hardware Develop custom instructions and accelerators targeted at your software workload

Unified programming model across AI workloads running on CPU, GPU & NPU Latest advancements in AI/ML algorithms can be quickly integrated into hardware designs

Profiles, Platforms and software ecosystem

ISA Extensions

Floating point, Bit ops, Vector

non-ISA Extensions

Interrupt controller, **IOMMU**

Software Extensions

Boot/Runtime Services ABI Specification

Custom Extensions Vendor specific **RVA**

Application Processor

RVB

Embedded Processor

RVM

Microcontroller

Server

Big Data, DB, LLM

SUSE

Android Auto

Embedded Linux

Automotive

Edge, AloT/Al

Core ISA

Extensions Enable Diversity

Profiles (mandatory ISA extensions) Certainty for software

Platforms

(Profile + nonISA + software) Certainty for OS & firmware

RVA23 Profile Ratified

Major release of RISC-V Application Processor Profile
Gives application compatibility across vendors
Major added extensions: Vector, Hypervisor

CUDA blog post

Build Target for Linux OS distro vendors as well as critical middleware and libraries like Yocto, RHEL, Ubuntu, CUDA

Yocto Project / RISE Progress

Key Milestones

- May
 - RISC-V International joined the Yocto Project as a Platinum member
- July / August
 - BayLibre partnered with RISE to support RISC-V development in the Yocto Project
- September
 - A talk on RISC-V International, RISE Project, and BayLibre's participation in Yocto Project was presented at Yocto Developer Day

Goal

 Make RISC-V a fully supported architecture in the Yocto Project and provide ongoing maintenance within the community

Yocto Project / RISE Progress

Current Status

- Focusing on triage/maintenance
 - Addressing issues in Bugzilla
 - AB-INT failures: e.g., glib2.0, libpng, libxml, rust, etc.
 - Other issues involving kernel builds, multilib, etc.
- Build and Test Infrastructure
 - RISC-V results featured in 5.3 M2 release test reports
 - Foundations set for RISC-V as a primary architecture
 - Currently relying on qemuriscv64 for automated testing

Yocto Project / RISE Progress

Future Plans

- Hardware Support Strategy
 - Evaluating the addition of RISC-V hardware to the autobuilder
 - RVA23 vs RVA22 and available hardware
 - Identifying widely adopted RVA22-compliant boards
- Upstreaming certain meta-riscv components to openembedded-core
- Expanding ptest support and package coverage

AI/ML on RISC-V: Why it is critical

- To be a competitive, RISC-V must deliver high-performance,
 out-of-the-box compatibility with essential AI tools
- Significant progress being made on key projects:
 - PyTorch: Foundational work to enable official support and high-performance RVV support.
 - Llama.cpp: Supporting strong community momentum
- Make RISC-V a first-class citizen for AI development and deployment
 - Wide area of work: the project themselves, dependencies (direct and indirect), CI/CD, development resources

PyTorch: Path to Official Support

- The ultimate goal is to **build, test, and distribute** PyTorch on riscv64 **directly from upstream**.
- This effort is built on several key milestones:
 - Accelerate ATen Operators & Dependencies: Using RISC-V Vector (RVV) extension as the foundation for all performance optimization.
 - o Upstream CI Integration: Building and testing on RISC-V hardware
 - Strategic Partnership: Active participation to the PyTorch community, establishing ourselves as a trusted partner for everything RISC-V.

pip3 install torch --index-url https://download.pytorch.org/whl/cpu

PyTorch: Accelerate ATen Operators

- Enable PyTorch to leverage the RVV extension
 - Extends <u>PR #135570</u> for supporting the RISC-V Vector (RVV) extension
 - o RISE is funding Project RP013 to accelerate optimizing PyTorch
 - Partnering with BayLibre to deliver the work upstream
 - Goal: integrating RVV support, and targeting RVA23
 - This project moves beyond simple enablement to focus on vector-length agnostic (VLA) optimization
- Improve dependencies OpenBLAS and oneDNN
 - Faster matrix multiplication operators like aten::mm or aten::addmm
 - Benefits PyTorch and the whole ecosystem at large

PyTorch: Upstream CI Integration

• <u>PR #143979</u> introduces an optional RISC-V build to the official PyTorch CI/CD pipeline.

Why this matters:

- Makes riscv64 a visible, recognized architecture
- Automatically tests changes to prevent future build breakages
- A **crucial first step** to becoming an officially supported platform

Next steps:

- Actively integrating GitHub RISC-V runners to streamline development and testing
- Challenges with availability of faster hardware

Llama.cpp: Continue on Community Momentum 🚀

- Llama.cpp has seen an incredible wave of organic, community-driven contributions for RISC-V.
 - Demonstrates a **strong and active developer interest** for RISC-V
- RISE is building on this success by funding RP014
 - Expand RVV support, ensuring it is highly optimized for VLEN from 128 to 1024 bits with VLA optimizations
 - Functional and performance testing on RISC-V hardware, boosting riscv64 to a top-tier supported platform in the upstream project

IREE (Future): Compiler and Runtime Optimizations

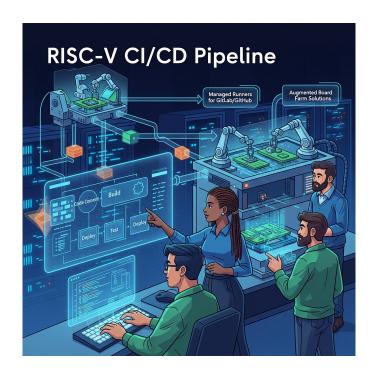
- A MLIR-based compiler that optimizes AI models from frameworks like
 PyTorch and TFLite to run efficiently on diverse hardware.
- **RISC-V support in IREE is under-invested** compared to ARM and x86. Optimizing this layer is crucial for competitive performance.
- Proposed Project:
 - Goal: Optimize the IREE compiler to generate high-performance, RVV-enabled code
 - Initial Target: Focus on the end-to-end performance of key models like YOLOv7/v8
 - **Outcome:** All work is upstreamed, providing the entire ecosystem with a more powerful, MLIR-based toolchain

AI/ML: Summary & Vision for the Future

Summary:

- A coordinated, well-resourced effort is underway to make RISC-V a first-class citizen for AI/ML.
- Tackling the ecosystem at multiple levels:
 - native framework support: PyTorch, Llama.cpp
 - compiler toolchain: IREE
 - dependencies: python packages, native libraries
- Focused on robust, upstream-first RVV and RVA23 support

Vision:


 A future where developers have a choice of high-performance tools for deploying AI models on RISC-V, enabling a competitive and thriving software and hardware ecosystem

CI Enablement Program Overview

- Facilitating developer access to RISC-V CI/CD
- Providing managed runners for Gitlab/Github
- Streamlining RISC-V build and test processes
- Augmenting current board farm solutions

Q&A

