
End of 2024
Ecosystem Update

RISE High Level Overview

RISE Partnership with
RISC-V International (Andrea Gallo)

RISE Workgroup 2024 Achievements

Software Ecosystem Collaborations

Q&A

Agenda

RISE Overview

RISE (RISC-V Software Ecosystem) Objectives

Improve RISC-V platform quality to match other architectures

Advance the RISC-V software ecosystem

How: Working Upstream, Transparently

Coordinate with existing communities and share resources

Open to project submissions from anyone

Prioritize projects based on community input

RISE Members
Premier Members

General Members

Additional Information: https://riseproject.dev/

https://riseproject.dev/

RISE Governance Organization Chart

Jeffrey Osier-MixonNathan Egge

Andrew de los Reyes

Barna Ibrahim
 Vice Chair

Amber Huffman
 Chair

Michelle Martineau

Technical Steering MarketingProgram Management

Governing Board

Melissa Daniels

Larry Wikelius
 Treasurer

Jen Li

Paul Walmsley
SiFive

Developer
infrastructure Distro & Integration Kernel Security Software

Firmware Simulator/Emulators System Libraries

Brian Harrington
RedHat

Anup Patel
Ventana Micro

Robin Randhawa
SiFive

Sunil V L
Ventana Micro

Daniel Barboza
Ventana Micro

Nathan Egge
Google

Compilers & Toolchains Debug & Profiling Language Runtimes

Jeff Law
Ventana Micro

Xaio Wang
Intel

Ludovic Henry
Rivos

RISE Working Group Leads

Visit our RISE Confluence for Working Group Details

https://wiki.riseproject.dev/#all-updates

RISE Working Groups
Compilers & Toolchains LLVM, GCC, GLIBC

System Libraries FFmpeg, OpenBLAS, OneDAL, XNNpack

Kernel & Virtualization Linux, Android

Language Runtimes Python, Java/OpenJDK, Go, Javascript, WebAssembly, Rust

Linux Distro Integration Ubuntu, Debian, RedHat, Fedora, Alpine

Debug & Profiling Tools Performance Profiles, DynamoRIO, Valgrind

Simulator/Emulators QEMU, SPIKE

Software Security Secure Root-of-Trust, Confidential Compute

System Firmware UEFI, U-Boot, Coreboot, TF-M

Developer Infrastructure Build Farm, Board Farm, Developer Tools

RISE Workgroup
2024 Achievements

Libraries and Middleware
Language Runtimes Developer Infrastructure System Libraries

● Java versions 17, 21, 22, 23, and 24 are now
available on RISC-V. Better support for RVA23
extensions

● Python Packaging and Distributing foundational
Python packages (Numpy, Scipy, cmake, ninja, etc.).
Engaged with AlmaLinux, for packaging support
upstream, funding with RP011

● Go - Funded project to accelerate Go runtime in
RISC-V in RP001. Landed improvements for Bitmanip,
Vector, Vector crypto extensions (sha256, sha512)

● Javascript - Added support to V8 and SpiderMonkey
● Rust - Engaged with RISC-V community to bring to

Tier 1 level support, funded in RP004
● Published RISC-V Optimization Guide

Build Farm - 600% growth since Nov 2023 in
machine cycles dedicated to RISC-V

● Seven active CI projects: Linux Kernel, gcc
pre-commit, gcc post-commit, glibc
pre-commit, gcc fuzzing, LLVM fuzzing, Python
modules

● New RISC-V projects served: LLVM, Python,
glibc, and OpenJDK

● Funded additional LLVM CI / CD in RP006
● Expanded support to RISC-V GCC and Linux

kernel communities
● Discovered ~100 LLVM, gcc bugs with

toolchain fuzzers on RISE infrastructure

● Added RISC-V Vector optimizations to system
libraries: bionic, dav1d, zlib-ng, XNNPACK

● Identified toolchain issues blocking RISC-V,
fixed bugs upstream or filed open issues

● Published best practice guide on how to
integrate RISC-V and RVV SIMD into existing
library including CI/CD testing with QEMU

● RP005 QEMU TCG improvements: As of 9.2
qemu now 2x-3x faster RVV loads and stores!

● Linux Developer Images for the Canaan K230
and Banana PI BPI-F3 with up-to-date tooling
to support upstream RISC-V optimization

● RISC-V Multimedia Instruction Wishlist
- Several new extension proposed now

in RVI fast track processes: zip/unzip,
dotproduct, vector abs-diff

What’s Next:

● Java, Go - Ongoing improvements for better support
of extensions for RVA23

● Python - Upstream packaging tools support RISC-V
● WebAssembly - Support for WASM SIMD
● Kubernetes - Upstream support for RISC-V

What’s Next:

● Build Farm: Enable more projects as needed
● Board Farm: Enable hardware testing for

RISE Build Farm projects
● Automate Gentoo-based developer tools

image for community use, to contain recent
builds of RISC-V toolchains, kernel, and other
key tools

What’s Next:

● Performance testing framework for RISC-V
code: auto-vectorization, intrinsics, or SIMD

● Collaborate with RVI devboard SIG to bring
Gentoo Developer Images to more platforms

● Continue to focus on high-profile, in-demand
projects based on member priorities

https://gitlab.com/riseproject/python
https://riscv-optimization-guide.riseproject.dev/
https://lf-rise.atlassian.net/wiki/spaces/HOME/pages/8588516/RISCV64+new+vector+instructions+requirements+for+video+multimedia

Developer Tools

Simulators/Emulators Linux Distro
Integration Debug & Profiling

QEMU
● ACPI support for PLIC
● ACPI SRAT/SLIT (NUMA)
● SMBIOS support for RISC-V
● RVA22 Profile Support
● RISC-V IOMMU support (PCI device)

The Distro Integration group
meetings are public and have
discussions about software needs
common to all major Linux distros,
Android, and etc.

Recent discussions:

● Ensuring a consistent boot flow
● Responsibility for code updates

below the OS

Perf Tools
● Event discovery via json (for Supervisor Counter Delegation ext),

development done, upstreaming WIP
● Support for Control Transfer Records extension development done.

Upstreaming WIP
Dynamic binary Instrumentation

● DynamoRIO basic RVV support (code/decode) is upstreamed
● DynamoRIO dcachesim and drcov clients support get upstreamed
Tracing

● BFP JIT optimization with Zba extension. (Upstreamed)

What’s next:
● RVA23 support
● Further IOMMU enhancements
● P extension support
● World Guard support and others

What’s next:
● Secure boot signing keys

What’s next:
Debugging:

● GDB support for vector register dumping, FP16, BF16, CFI,
pointer masking

● FW/Kernel/Debugger support for HW breakpoint/watchpoints
Linux Perf:

● Drive community patch review for CTR, PMU Counter
delegation

DynamoRIO: RVV support
Valgrind: Cleanup, fencei, NaN-box checking, B/V extension support
eBPF: Support to probe mem watchpoint

Platform

Kernel and Virtualization System Firmware Compilers & Toolchains

Linux Kernel (upstreamed)
● AIA drivers with DT and ACPI support
● ACPI - LPI and CPPC support
● IOMMU driver with DT support
● SBI v2.0 - Steal time, System suspend, Debug

console, and PMU snapshot

KVM (upstreamed)
● KVM self tests
● KVM unit tests
● AIA in-kernel irqchip with IMSIC guest file support
● KVM host nested acceleration
● Virtualize SBI v2.0 - Steal time, System suspend,

Debug console, and PMU support

● Svpbmt extension support on EDK2.
● Coreboot support for Sifive Unmatched.
● Native/hosted debug support in opensbi.
● Domain context switch support in opensbi.
● librpmi reference implementation
● RPMI/MPXY support in OpenSBI
● PoC / demo ready for

● DynamicTablesPkg for RISC-V in EDK2;
● StandaloneMMPkg for RISC-V in EDK2;
● OP-TEE for RISC-V

GCC
● If-conversion and Zicond support (gcc-14)
● Basic RVV Autovectorization support (gcc-14)
● Optimization of CRC using table lookups or

clmul (gcc-15)
● Stack clash protection (gcc-15)
● Ceil/Round improvements, Zfa support (gcc-15)
● Constant Synthesis Improvements (gcc-15)
● Performant autovectorization support (gcc-15)

LLVM
● Zfa support (llvm-18)
● Constant synthesis improvements (llvm-19)
● Improved code generation for large VLEN

uarchs (llvm-19)
● Shadow Stacks (llvm-19)
● Shrink Wrapping (llvm-20)
● Stack clash protection (llvm-20)

What’s next:
● KVM irqbypass support
● IOMMU ACPI RIMT support
● SBI v3.0 support in Kernel and KVM
● CoVE support Host & Guest
● CBQRI & Ssqosid in Kernel and KVM

What’s next:
● Librpmi improvements
● OP-TEE
● Adherence to BRS requirements in EDK2

What’s Next:
● Vector mem* and str* in glibc
● Shrink-wrapping (LLVM)
● Permutation improvements (GCC)
● Permutation elimination (GCC, LLVM)
● xz vectorization (GCC, LLVM)

Software
Ecosystem
Collaborations

RISE RFPs (Request for Proposal)

Project intake and TSC Review
○ Project Intake Form
○ Project Proposal Template
○ List of Projects

● Recommended Projects brought to GB for
approval

● Publication for open bids
○ Contractor Bid Form
○ Bid to remain open for a minimum of

1 week

● Review and Approval of Bids
○ Must have a minimum of 3 (TL, 2 TSC

Leads) reviewers
○ TL will recommend proposal(s) to GB
○ GB will have final approval for

contract award
● Contract award and Payment will go

through LF Contractor Process
● Execution

○ TL will manage contractor
● Conclusion of Work

○ TL to approve invoice(s) and conclude
work

Conception Approval Publication &
Bidding

Bid Review &
Award Contract Execution

End of Contract

Project
submission
and TSC Review
Intake Form

TSC
Recommended
Projects brought
to RISE GB for
Approval

Publication for
Open bids.
Bidding Form

Review and
Approval of Bids

Award Project.

Tech Lead will
collaborate.

TL accepts the
project and
approve invoices.

Goal: Strengthen the RISC-V software ecosystem by supporting upstream
projects and addressing priorities through an open RFP process.

Transparent Process

https://docs.google.com/forms/d/12801okQVDqRu5ST_nWnEMY9q6cjyrQG248P2yoadzBY/edit
https://docs.google.com/document/d/1_o16d1OALIhzcasu1ZfpqBANyULO6VMLmIVraR6qzkQ/edit
https://docs.google.com/spreadsheets/d/1r4FEX_uSKO_oSdFZhuUCikcfml1GiqOCb2NqQPk44qg/edit#gid=0
https://docs.google.com/forms/d/1QgMwfzNXn9Ujl4LhntWEpndHWTukJxnx-uxhF82XpXA/edit
https://drive.google.com/file/d/17fUJEc9LezkjebqY3Li64Uga37CrvaSm/view?usp=sharing
https://docs.google.com/forms/d/12801okQVDqRu5ST_nWnEMY9q6cjyrQG248P2yoadzBY/edit
https://docs.google.com/forms/d/1QgMwfzNXn9Ujl4LhntWEpndHWTukJxnx-uxhF82XpXA/edit

Go - Enhanced Go Runtime performance with
RISC-V Bitmanip, Vector, Vector Crypto extension
support, optimizing critical libraries and resolving
unaligned memory access issues.

Rust - The Rust RISC-V Linux target now meets
Tier-1 requirements without host tools, passing
all compiler tests on qemu-system-riscv64. With
maintainers in place, it is on track toward full
Tier-1 support as silicon improves.

LLVM CI for RISC-V, Leveraged QEMU-based
testing to support profiles and optimized
build configurations, delivering faster
feedback and enhancing reliability and
efficiency in RISC-V toolchain development.

OpenOCD - RISC-V OpenOCD upstreaming.
Structured patch integration, thorough testing,
and repository archival to streamline future
development and distribution.

QEMU TCG - Enhance QEMU performance for
vector (V) and crypto (Zvk) extensions with
efficient TCGOps, boosting OSS development via
faster emulation and CI/CD. Achieved 2x faster
memory operations and halved AOSP boot time.

Compiler Spec optimization - Two projects aimed
at improving LLVM and GCC for RISC-V,
addressing performance gaps versus AArch64
SPEC2017 benchmarks. This led to reduced
inefficiencies and closed architectural gaps.

RFP Highlighted Results

Purpose: Recognize & support developers driving RISC-V adoption.

Goal: Make RISC-V the standard platform for developers.

Focus on Open Source:

Contributions to be open-source and
publicly available

Aims to enable RISC-V integration
over pure performance optimization

Port, test, release project on RISC-V

Submit via the Developer Appreciation
GitHub

How to Participate:

RISE Developer Appreciation Program

https://github.com/Rise-dev-appreciation/Rise-dev-appreciation

Hardware needs
Software which
needs Hardware
Andrea Gallo

Hardware needs Software which needs Hardware

Hardware Needs More Software

● Software Enablement
○ Cannot do much without!!!

● Reference Workloads
○ Identify gaps and performance

bottlenecks in real-life use cases
● Reference Stacks

○ Critical for the Developer Experience
○ Accelerate time-to-value add for device

makers, avoid wasting months just to
get a baseline up and running

● Certification
○ IP / pre- and on-silicon test suites
○ Platform test suites
○ Models

Software Needs Better Hardware

● Better Performance
○ AI/ML
○ Media codecs
○ Real Time

● Better Security
○ Pointer Masking, Shadow Stack,

Landing Pads, Control Flow Integrity
● Standardization

○ Profiles and Platforms to run binary OS
distros on compliant devices

○ Avoid unnecessary fragmentation

Ongoing optimisation of media codecs*

● dav1d, x264, ffmpeg, XNNPACK, etc.

Identify bottlenecks

● Vector transpose, absolute difference,
zero extended move to vector register

Estimate speed-up

● Evaluate the contribution of each
operation to the overall performance

Life cycle

● Explain the product use cases and
gap vs other ISAs

● Propose a new set of media
extensions

● Identify resources and build a plan for
the RISC-V TSC to form a new TG

Golden example: new vector instructions for media

(*) findings reported by Nathan Egge from Google, Punit Agrawal and others from ByteDance
https://lf-rise.atlassian.net/wiki/spaces/HOME/pages/8588516/RISCV64+new+vector+instructions+requirements+for+video+multimedia

https://lf-rise.atlassian.net/wiki/spaces/HOME/pages/8588516/RISCV64+new+vector+instructions+requirements+for+video+multimedia

Improving *both* perf and security!

Performance
Quality-of-Service (QoS) Identifiers,
Obviating Memory-Management
Instructions after Marking PTEs Valid
Capacity and Bandwidth QoS Register
Interface
BF16 Extensions
B Standard Extension for Bit
Manipulation Instructions
Smcdeleg, Indirect CSR Access

Security
Priv 1.13, Pointer Masking

Double Trap, Resumable Non-Maskable
Interrupts
Shadow Stacks and Landing Pads
Zaamo and Zalrsc Extensions, Byte and
Halfword Atomic Memory Operations
May-Be-Operations
Supervisor Binary Interface Specification

25

Functionality
RVA23, RVB23, RERI Architecture Specification, Functional Fixed Hardware Specification,
E-Trace Encapsulation, N-Trace, Trace Control Interface, Trace Connectors

Q&A

How RISE is
Contributing

Activate Broader Developer Community

How you can
get involved

Becoming a member

Request For Proposals (RFPs)

Developers Incentive Program

Foster Public Open Source Standard Collaboration

Establish Developer Infrastructure

https://riseproject.dev/

https://riseproject.dev/

Thank You!

RISE Governing Board
Organization Voting Rep Alternate Voting

Google Tim Kilbourn Lars Bergstrom

Intel Mark Skarpness Gary Martz

Qualcomm Larry Wikelius

Rivos Aaron Durbin Andrew de los Reyes

Ventana Travis Lanier Marc Canel

SiFive John Ronco Paul Walmsley

Red Hat Steve Wanless Jeffrey Osier-Mixon

T-Head (Alibaba) Dr. Jing Yang

Andes Charlie Hong-Men Su Rich Chuang

Mediatek Tom Kao Hunglin Hsu

Samsung Daniel Park Dwarkaprasad Dayama

Nvidia Amit Pabalkar Vikram Sethi

Imagination Matthew Bubis Chris Smith

