

End of 2024 Ecosystem Update

Agenda

RISE High Level Overview

RISE Workgroup 2024 Achievements

Software Ecosystem Collaborations

RISE Partnership with RISC-V International (Andrea Gallo)

Q&A

RISE Overview

RISE (RISC-V Software Ecosystem) Objectives

Improve RISC-V platform quality to match other architectures

Advance the RISC-V software ecosystem

How: Working Upstream, Transparently

Coordinate with existing communities and share resources

Open to project submissions from anyone

Prioritize projects based on community input

RISE Members

Premier Members

General Members

tenstorrent

RISE Governance Organization Chart

RISE Working Group Leads

Compilers & Toolchains

Language Runtimes

Jeff Law Ventana Micro

Xaio Wang Intel

Ludovic Henry Rivos

Developer infrastructure

Distro & Integration

Kernel

Security Software

Paul Walmsley SiFive

Brian HarringtonRedHat

Anup Patel Ventana Micro

Robin Randhawa SiFive

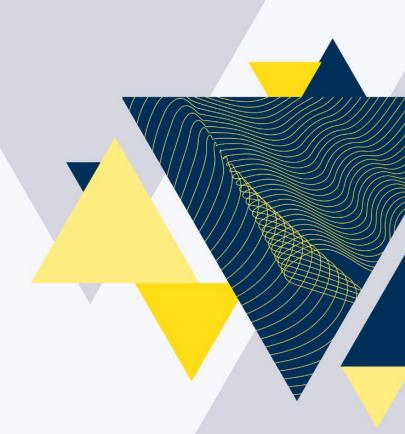
Firmware

Simulator/Emulators

Sunil V LVentana Micro

Daniel Barboza Ventana Micro

Nathan EggeGoogle



RISE Working Groups

Compilers & Toolchains	LLVM, GCC, GLIBC		
System Libraries	FFmpeg, OpenBLAS, OneDAL, XNNpack		
Kernel & Virtualization	Linux, Android		
Language Runtimes	Python, Java/OpenJDK, Go, Javascript, WebAssembly, Rust		
Linux Distro Integration	Ubuntu, Debian, RedHat, Fedora, Alpine		
Debug & Profiling Tools	Performance Profiles, DynamoRIO, Valgrind		
Simulator/Emulators	QEMU, SPIKE		
Software Security	Secure Root-of-Trust, Confidential Compute		
System Firmware	UEFI, U-Boot, Coreboot, TF-M		
Developer Infrastructure	Build Farm, Board Farm, Developer Tools		

RISE Workgroup 2024 Achievements

Libraries and Middleware

Language Runtimes	Developer Infrastructure	System Libraries
 Java versions 17, 21, 22, 23, and 24 are now available on RISC-V. Better support for RVA23 extensions Python Packaging and Distributing foundational Python packages (Numpy, Scipy, cmake, ninja, etc.). Engaged with AlmaLinux, for packaging support upstream, funding with RP011 Go - Funded project to accelerate Go runtime in RISC-V in RP001. Landed improvements for Bitmanip, Vector, Vector crypto extensions (sha256, sha512) Javascript - Added support to V8 and SpiderMonkey Rust - Engaged with RISC-V community to bring to Tier 1 level support, funded in RP004 Published RISC-V Optimization Guide 	Build Farm - 600% growth since Nov 2023 in machine cycles dedicated to RISC-V Seven active CI projects: Linux Kernel, gcc pre-commit, gcc post-commit, glibc pre-commit, gcc fuzzing, LLVM fuzzing, Python modules New RISC-V projects served: LLVM, Python, glibc, and OpenJDK Funded additional LLVM CI / CD in RP006 Expanded support to RISC-V GCC and Linux kernel communities Discovered ~100 LLVM, gcc bugs with toolchain fuzzers on RISE infrastructure	Added RISC-V Vector optimizations to system libraries: bionic, dav1d, zlib-ng, XNNPACK Identified toolchain issues blocking RISC-V, fixed bugs upstream or filed open issues Published best practice guide on how to integrate RISC-V and RVV SIMD into existing library including CI/CD testing with QEMU RP005 QEMU TCG improvements: As of 9.2 qemu now 2x-3x faster RVV loads and stores! Linux Developer Images for the Canaan K230 and Banana PI BPI-F3 with up-to-date tooling to support upstream RISC-V optimization RISC-V Multimedia Instruction Wishlist Several new extension proposed now in RVI fast track processes: zip/unzip, dotproduct, vector abs-diff
What's Next:	What's Next:	What's Next:
 Java, Go - Ongoing improvements for better support of extensions for RVA23 Python - Upstream packaging tools support RISC-V WebAssembly - Support for WASM SIMD Kubernetes - Upstream support for RISC-V 	 Build Farm: Enable more projects as needed Board Farm: Enable hardware testing for RISE Build Farm projects Automate Gentoo-based developer tools image for community use, to contain recent builds of RISC-V toolchains, kernel, and other key tools 	 Performance testing framework for RISC-V code: auto-vectorization, intrinsics, or SIMD Collaborate with RVI devboard SIG to bring Gentoo Developer Images to more platforms Continue to focus on high-profile, in-demand projects based on member priorities

Developer Tools

Simulators/Emulators	Linux Distro Integration	Debug & Profiling
 QEMU ACPI support for PLIC ACPI SRAT/SLIT (NUMA) SMBIOS support for RISC-V RVA22 Profile Support RISC-V IOMMU support (PCI device) 	The Distro Integration group meetings are public and have discussions about software needs common to all major Linux distros, Android, and etc. Recent discussions: • Ensuring a consistent boot flow • Responsibility for code updates below the OS	Perf Tools Event discovery via json (for Supervisor Counter Delegation ext), development done, upstreaming WIP Support for Control Transfer Records extension development done. Upstreaming WIP Dynamic binary Instrumentation DynamoRIO basic RVV support (code/decode) is upstreamed DynamoRIO dcachesim and drcov clients support get upstreamed Tracing BFP JIT optimization with Zba extension. (Upstreamed)
What's next: RVA23 support Further IOMMU enhancements Pextension support World Guard support and others	What's next: • Secure boot signing keys	What's next: Debugging: GDB support for vector register dumping, FP16, BF16, CFI, pointer masking FW/Kernel/Debugger support for HW breakpoint/watchpoints Linux Perf: Drive community patch review for CTR, PMU Counter delegation DynamoRIO: RVV support Valgrind: Cleanup, fencei, NaN-box checking, B/V extension support eBPF: Support to probe mem watchpoint

Platform

Kernel and Virtualization	System Firmware	Compilers & Toolchains	
Linux Kernel (upstreamed) AlA drivers with DT and ACPI support ACPI - LPI and CPPC support IOMMU driver with DT support SBI v2.0 - Steal time, System suspend, Debug console, and PMU snapshot KVM (upstreamed) KVM self tests KVM unit tests AlA in-kernel irqchip with IMSIC guest file support KVM host nested acceleration Virtualize SBI v2.0 - Steal time, System suspend, Debug console, and PMU support	 Svpbmt extension support on EDK2. Coreboot support for Sifive Unmatched. Native/hosted debug support in opensbi. Domain context switch support in opensbi. librpmi reference implementation RPMI/MPXY support in OpenSBI PoC / demo ready for DynamicTablesPkg for RISC-V in EDK2; StandaloneMMPkg for RISC-V in EDK2; OP-TEE for RISC-V 	GCC If-conversion and Zicond support (gcc-14) Basic RVV Autovectorization support (gcc-14) Optimization of CRC using table lookups or clmul (gcc-15) Stack clash protection (gcc-15) Ceil/Round improvements, Zfa support (gcc-15) Constant Synthesis Improvements (gcc-15) Performant autovectorization support (gcc-15) LLVM Zfa support (Ilvm-18) Constant synthesis improvements (Ilvm-19) Improved code generation for large VLEN uarchs (Ilvm-19) Shadow Stacks (Ilvm-19) Shrink Wrapping (Ilvm-20) Stack clash protection (Ilvm-20)	
What's next: KVM irqbypass support IOMMU ACPI RIMT support SBI v3.0 support in Kernel and KVM CoVE support Host & Guest CBQRI & Ssqosid in Kernel and KVM	What's next: • Librpmi improvements • OP-TEE • Adherence to BRS requirements in EDK2	What's Next: Vector mem* and str* in glibc Shrink-wrapping (LLVM) Permutation improvements (GCC) Permutation elimination (GCC, LLVM) xz vectorization (GCC, LLVM)	

Software Ecosystem Collaborations

RISE RFPs (Request for Proposal)

Goal: Strengthen the RISC-V software ecosystem by supporting upstream projects and addressing priorities through an open RFP process.

Transparent Process

Conception	Approval	Publication & Bidding	Bid Review & Award Contract	Execution	End of Contract
Project submission and TSC Review Intake Form	TSC Recommended Projects brought to RISE GB for Approval	Publication for Open bids. <u>Bidding Form</u>	Review and Approval of Bids Award Project.	Tech Lead will collaborate.	TL accepts the project and approve invoices.

RFP Highlighted Results

- ✓ **Go** Enhanced Go Runtime performance with RISC-V Bitmanip, Vector, Vector Crypto extension support, optimizing critical libraries and resolving unaligned memory access issues.
- ✓ OpenOCD RISC-V OpenOCD upstreaming. Structured patch integration, thorough testing, and repository archival to streamline future development and distribution.
- ✔ Rust The Rust RISC-V Linux target now meets
 Tier-1 requirements without host tools, passing
 all compiler tests on qemu-system-riscv64. With
 maintainers in place, it is on track toward full
 Tier-1 support as silicon improves.
- LLVM CI for RISC-V, Leveraged QEMU-based testing to support profiles and optimized build configurations, delivering faster feedback and enhancing reliability and efficiency in RISC-V toolchain development.
- ✔ QEMU TCG Enhance QEMU performance for vector (V) and crypto (Zvk) extensions with efficient TCGOps, boosting OSS development via faster emulation and CI/CD. Achieved 2x faster memory operations and halved AOSP boot time.
- Compiler Spec optimization Two projects aimed at improving LLVM and GCC for RISC-V, addressing performance gaps versus AArch64 SPEC2017 benchmarks. This led to reduced inefficiencies and closed architectural gaps.

RISE Developer Appreciation Program

Purpose: Recognize & support developers driving RISC-V adoption.

Goal: Make RISC-V the standard platform for developers.

Focus on Open Source:

Contributions to be open-source and publicly available

Aims to enable RISC-V integration over pure performance optimization

How to Participate:

Port, test, release project on RISC-V

Submit via the Developer Appreciation GitHub

Hardware needs Software which needs Hardware

Andrea Gallo

Hardware needs Software which needs Hardware

Hardware Needs More Software

- Software Enablement
 - Cannot do much without!!!
- Reference Workloads
 - Identify gaps and performance bottlenecks in real-life use cases
- Reference Stacks
 - Critical for the Developer Experience
 - Accelerate time-to-value add for device makers, avoid wasting months just to get a baseline up and running
- Certification
 - IP / pre- and on-silicon test suites
 - Platform test suites
 - Models

Software Needs Better Hardware

- Better Performance
 - o AI/ML
 - Media codecs
 - Real Time
- Better Security
 - Pointer Masking, Shadow Stack, Landing Pads, Control Flow Integrity
- Standardization
 - Profiles and Platforms to run binary OS distros on compliant devices
 - Avoid unnecessary fragmentation

Golden example: new vector instructions for media

Ongoing optimisation of media codecs*

dav1d, x264, ffmpeg, XNNPACK, etc.

Identify bottlenecks

 Vector transpose, absolute difference, zero extended move to vector register

Estimate speed-up

Evaluate the contribution of each operation to the overall performance

Life cycle

- Explain the product use cases and gap vs other ISAs
- Propose a new set of media extensions
- Identify resources and build a plan for the RISC-V TSC to form a new TG

(*) findings reported by Nathan Egge from Google, Punit Agrawal and others from ByteDance https://lf-rise.atlassian.net/wiki/spaces/HOME/pages/8588516/RISCV64+new+vector+instructions+requirements+for+video+multimedia

Improving *both* perf and security!

Performance

Quality-of-Service (QoS) Identifiers, Obviating Memory-Management Instructions after Marking PTEs Valid

Capacity and Bandwidth QoS Register Interface

BF16 Extensions

B Standard Extension for Bit Manipulation Instructions

Smcdeleg, Indirect CSR Access

Security

Priv 1.13, Pointer Masking

Double Trap, Resumable Non-Maskable Interrupts

Shadow Stacks and Landing Pads

Zaamo and Zalrsc Extensions, Byte and Halfword Atomic Memory Operations

May-Be-Operations

Supervisor Binary Interface Specification

Functionality

RVA23, RVB23, RERI Architecture Specification, Functional Fixed Hardware Specification, E-Trace Encapsulation, N-Trace, Trace Control Interface, Trace Connectors

Q&A

How RISE is Contributing

Foster Public Open Source Standard Collaboration

Establish Developer Infrastructure

Activate Broader Developer Community

Becoming a member

Request For Proposals (RFPs)

Developers Incentive Program

How you can get involved

https://riseproject.dev/

Thank You!

RISE Governing Board

Organization	Voting Rep	Alternate Voting
Google	Tim Kilbourn	Lars Bergstrom
Intel	Mark Skarpness	Gary Martz
Qualcomm	Larry Wikelius	
Rivos	Aaron Durbin	Andrew de los Reyes
Ventana	Travis Lanier	Marc Canel
SiFive	John Ronco	Paul Walmsley
Red Hat	Steve Wanless	Jeffrey Osier-Mixon
T-Head (Alibaba)	Dr. Jing Yang	
Andes	Charlie Hong-Men Su	Rich Chuang
Mediatek	Tom Kao	Hunglin Hsu
Samsung	Daniel Park	Dwarkaprasad Dayama
Nvidia	Amit Pabalkar	Vikram Sethi
Imagination	Matthew Bubis	Chris Smith

